教案可以帮助教师更好地管理课堂时间,我们要确保教案的内容与学校的核心价值观一致,下面是满分范文网小编为您分享的圆柱的表面积教案8篇,感谢您的参阅。
圆柱的表面积教案篇1
设计说明
本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:
1.利用迁移、猜想,理解圆柱表面积的意义。
新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。
2.利用演示、分析探究圆柱表面积的求法。
直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。
3.联系实际,解决问题。
在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。
课前准备
教师准备 ppt课件
学生准备 圆柱形实物
教学过程
⊙复习导入
1.铺垫。
师:长方体的表面积指的是什么?(6个面的面积之和)
师:怎样求长方体的表面积?
预设
生1:长方体的表面积=长×宽×2+长×高×2+宽×高×2。
生2:长方体的表面积=(长×宽+长×高+宽×高)×2。
2.迁移。
(1)圆柱的表面积指的是什么?(三个面的面积之和)
(2)怎样求圆柱的表面积?(生自由回答)
3.导入。
圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。这节课我们就来学习圆柱的表面积的.相关知识。(板书:圆柱的表面积)
设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。
⊙探究新知
1.教学例3,探究计算圆柱表面积的方法。
(1)理解圆柱表面积的意义。
①出示圆柱模型,观察思考:圆柱的表面积指的是什么?
②结合学生的回答,课件演示理解:圆柱的表面积指的是两个底面的面积加上一个侧面的面积。
(2)探究圆柱表面积的求法。
学生独立探究,然后汇报交流。
①圆柱的侧面积=底面周长×高。(强调长方形的长为圆柱的底面周长,宽为圆柱的高)
用字母表示为s侧=ch。
②底面积=πr2。
③圆柱的表面积=圆柱的侧面积+两个底面的面积。用字母表示为s表=ch+2πr2。
2.教学例4,解决求圆柱表面积的实际问题。
课件出示例4。(利用圆柱表面积的计算方法解决实际问题)
(1)学生读题,找一找这道题的所求问题。
明确:求做这样一顶帽子至少要用多少平方厘米的面料,就是求圆柱的表面积。
(2)想一想:怎样求这个圆柱的表面积呢?
①一顶帽子由几部分组成?
(一个侧面+一个底面)
②明确解题思路及解法。
先求帽子的侧面积:帽子的侧面积=πdh。
再求帽顶的面积:帽顶的面积=πr2。
最后求帽子的侧面积与帽顶的面积之和。
师:解题时需要注意什么?
圆柱的表面积教案篇2
教学目标:
1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:
运用所学的知识解决简单的实际问题。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用c÷π÷2来求出圆柱的底面半径)
二、实际应用
1、练习二第13题
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
2、练习二第7题
(1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)
(2)学生独立完成这道题,集体订正。
3、练习二第9题
(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
4、练习二第16题
(1)学生读题理解题意后尝试独立解题。
(2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。
5、练习二第19题
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。
三、布置作业
练习二第8、10、15、17、18及20题完成在作业本上。
板书: 圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
教学反思:
圆柱的表面积教案篇3
圆柱的表面积练习课
教学内容:教材14页例4和练习二余下的练习。
教学目标:
1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:
运用所学的知识解决简单的实际问题。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(只列式,不计算)
二.教学例4
(1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的.结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=20xx.4≈20xx(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、指导练习
1、练习二第9题
(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
2、练习二第17题
先引导学生明确题意,求用彩纸的面积就是圆柱的表面积减去(78.5×2)平方厘米,再组织学生独立练习,集体订正。
3、练习二第13题
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
4、练习二第19题
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留两位小数。
四、布置作业
练习二第10、15、20题
第三课时教学反思
学生有上一节课扎实的表面积教学作基础,这节课例4的学习显得十分轻松。在这一环节,学生共提出两个有价值的问题:“求做这样一顶帽子需要多少面料,也就是求哪几部分的面积总和?”“结果20xx.4按四舍五入法保留整十数应该约等于20xx,可为什么教材中应是约等于20xx?”我在此环节,将教学重点放在联系生活实际,引导学生思考所求问题到底是求什么,即要求学生能够具体问题具体分析。在教学完例题后,运用一组选择题,提升学生灵活应用知识解决实际问题的能力。练习题目如下:
做通风管需要多少铁皮
圆柱形水池的占地面积
做无盖的圆柱形水桶需要多少铁皮
做圆柱形油桶需要多少铁皮
卫生纸中间硬纸轴需要多大的硬纸板
求水池底部和四周贴瓷砖的面积
压路机滚筒滚动一周的面积
(1)求侧面积;(2)求1个底面积与侧面积的和;(3)求底面积;(4)求2个底面积与侧面积的和
指导练习内容较多,难以在一课时完成,所以准备再补充一节练习课。
两个惊喜
1、没想到班上有一名同学(数学科代表袁文杰)通过比的知识发现了底面积与侧面积之间的倍数关系,从而利用这一关系提高求表面积的速度。因为底面积=πr2,而圆柱体的侧面积=2πrh,所以s底:s侧=(πrr):(2πrh)=r:2h,2s底:s侧=r:h。当已知圆柱体底面半径和高求表面积时,如果先求出圆柱体侧面积,就可用侧面积÷h×r快速求出两个底面的面积,从而提高计算速度。
2、没想到班上居然有一名同学(数学科代表江赐阳阳)会用课前我查找资料中所介绍的转化方法来推导圆柱体的表面积。在他的带领下,同学们推导得出新的表面积计算公式:圆柱体的表面积=圆柱的底面周长×(高+底面半径)。正因为了解到这种方法,在练习中计算已知底面周长3.14米,高5米,求表面积时,全班前30名同学完成的同学不约而同地采用了这种方法,体现出这种方法对于已知周长和高求表面积的简便之处。
圆柱的表面积教案篇4
教学目标
1.认识掌握圆柱各部分名称,建立圆柱体空间概念;
2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。
教学重点和难点
1.教学重点:推导圆柱体侧面积的计算方法。
2.教学难点:圆柱体侧面积公式的推导过程。
教学过程设计
(一)复习准备
师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?
生:长方形。
师把长方形贴在黑板上。
师:面积如何求?
生:长方形面积=长×宽。(师板书)
师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。
师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?
然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。
师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的'反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?
师:今天我们就来学习一种新的形体——圆柱体。(板书课题——圆柱)
(二)学习新课
1.圆柱体的认识。
师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)
生:上、下两个面和周围一个面。
师:上、下两个面是什么形状?它们的面积大小怎样?
生:上、下两个面是圆形,面积相等。
师:我们把圆柱上、下两个面叫做底面。(板书:底面)
师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)
师:我们把一个圆在平面上滚动一周,痕迹是一条线段。如果把这个圆柱在平面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?
生:是一个长方形。
师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)
师接着拿出两个高矮不一样的圆柱体。
师问:为什么有高有矮呢?由什么决定的?
生:由高决定的。
师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。
师出示投影,让学生指出高。
师:圆柱的高有多少条?
生:无数条。
师:高都相等吗?
生:都相等。
师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)
师:我们讲的圆柱体都是直圆柱。
2.圆柱的侧面积。
(1)推导公式。
师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。
讨论题目是:
a:这个长方形与圆柱体有哪些关系?
b:你能推导出圆柱体侧面积计算方法吗?
然后学生汇报讨论结果。
生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:s侧=ch。
老师板书公式。
(2)利用公式计算。
例1一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)
老师在黑板上板演。
下面同学们进行练习。投影练习题:
①一圆柱底面半径是5厘米,高5厘米,求侧面积。
②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。
③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。
师:你能知道第③题圆柱侧面展开图是什么图形吗?
3.圆柱的表面积。
师在课题“圆柱”后面接着写“的表面积”。
(1)推导公式。
师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)
生汇报讨论结果,老师板书公式:
s表=s侧+2s圆
(2)利用公式计算。
(投影出示)
例2计算圆柱体的表面积(见下图)。(单位:厘米)
同学说思路,老师板书,注意每一步结果写计量单位。
解①侧面积:2×3.14×5×15=471(平方厘米)
②底面积:3.14×52=78.5(平方厘米)
③表面积:471+78.5×2=628(平方厘米)
答:它的表面积是628平方厘米。
例3一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
同学说思路,列式。老师把正确的解答用投影打出来。
(1)水桶的侧面积
3.14×20×24=1507.2(平方厘米)
(2)水桶的底面积
3.14×(20÷2)2
=3.14×102
=3.14×100
=314(平方厘米)
(3)需要铁皮
1507.2+314=1821.2≈1900(平方厘米)
答:做这个水桶要用铁皮1900平方厘米。
小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?
(三)巩固反馈
(1)看书第54页第1题。
(2)投影,指出下面圆柱体的高是几?
(3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少平方米?(只列式)
(4)一种轧道机,后轮直径1.32米,长1.27米。如果后轮每分钟转动6周,每分钟可轧路面多少平方米?(只列式)
(5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少平方分米?(结果保留一位小数。)
(6)一种圆柱形小油漆桶,底面周长50.24厘米,高20厘米。每个桶用铁皮多少平方分米?(四人讨论后口头回答。)
学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。
思考题:
(1)你要做一个圆柱体,先确定什么条件?你是怎样做的?
(2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的.另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?
提示:
课堂教学设计说明
本节课的教学设计分三个层次。
第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。
第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。
首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转平面、形变量不变的辩证关系,培养同学们的观察分析能力。
第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。
圆柱的表面积教案篇5
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学步骤
一、铺垫孕伏
1.口答下列各题(只列式不计算)。
(1)圆的半径是5厘米,周长是多少?面积是多少?
(2)圆的直径是3分米,周长是多少?面积是多少?
2.长方形的面积计算公式是什么?
3.教师出示圆柱体模型,指同学说出它有什么特征?
二、探究新知
1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。
(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。
(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。
2.教学例1
(1)出示例1,指同学读题,找出已知条件和所求问题。
学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。
板书:3.14×0.5×1.8=1.75×1.8≈2.83(平方米)
答:它的侧面积约是2.83平方米。
(2)反馈练习:完成做一做41页第1题。
学生独立解答,然后订正。
3.教学
(1)教师说明:圆柱的侧面积加上两个底面积就是。
(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
4.教学例2
(1)投影片出示例题2、圆柱的几何图形和表面积的展图。
(2)指同学读题,找出已知条件和所求问题。
(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。
(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。
教师巡视指导,注意检查学生的计算结果和计量单位是否正确。
做完后订正,订正时让学生说出有关的计算公式。
(5)反馈练习:完成做一做第2题。
指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。
5.教学例3
(1)出示例3,指名读题,找出已知条件和所求问题。
(2)教师提示:解答这道题应注意什么?
启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。
(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。
(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。
(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。
(6)“四舍五入”法与“进一法”有什么不同。
通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数
圆柱的表面积教案篇6
教学内容:教材第5~6页例2、例3和练一练,练习一第48题。
教学要求:
1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。
教学重点:掌握圆柱侧面积的计算方法。
教学难点:能根据实际情况正确地进行计算。
教学过程:
一、复习铺垫
1.复习圆柱的特征。提问:圆柱有什么特征?
2.计算下面圆柱的侧面积(口头列式):
(1)底面周长4.2厘米,高2厘米。
(2)底面直径3厘米,高4厘米。
(3)底面半径1厘米,高3.5厘米。
3.提问:圆柱的一个底面面积怎样计算?
4.引入新课。
我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)
二、教学新课
1.认识表面积计算方法。
(1) 请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。
(2)教师演示。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
(3)得出公式。
请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?
2.教学例2。
出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。
3.组织练习。
做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。
4.教学例3。
出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。
5.组织练习。
(1)下面的数用进一法保留整数,各是多少?(口答)
162.3 29.4 3.8 42.6
(2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。
三、课堂小结
这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。
四、布置作业
课堂作业:练习一第5~7题。
圆柱的表面积教案篇7
教学目标:圆柱表面积的,掌握圆柱表面积的计算方法,并能正确地计算圆柱的表面积。会解决简单的实际问题。
教学重点:掌握表面积的计算方法
教学难点:运用所学的知识解决简单的实际问题
教具准备:圆柱的展开图
教学过程:
一、复习
1、指名学生说出圆柱的特征。
2、圆柱的侧面积=底面周长高
3、计算下面各圆柱的侧面积。
(1)底面2.5周长米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
4、提问:圆柱的侧面积加两个底面的面积就圆柱的什么?(表面积)
二、教学表面积。
那么,圆柱的表面积是什么?明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
板书:圆柱的表面积=圆柱侧面积+两个底面的面积
1、教学例2。
出示例2的题目:一个圆柱的高是4.5分米,底面半径是2分米,它的表面积是多少?
(1)这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?
(2)我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数
据标在图上。现在我们把这个圆柱展开。出示展开图,如下:
2、小结:计算表面积时,一定要分步计算。先求什么,后求什么,再求什么。(提问)
3、出示试一试:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
(1)这道题已知什么?求什么?这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?
(2)要计算做这个水桶需要多少铁皮,应该分哪几步?
教师行间巡视,注意察看最后的得数是否计算正确。
(3)指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
三、课堂小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
四、巩固练习。
练一练第1~4题。
五、《作业本》第2页。
圆柱的表面积教案篇8
教学目标
1.经历认识圆柱展开图和探索表面积计算方法的过程。
2.认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。
3.积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。
教学重点
圆柱体表面积公式的推导。
教学难点
运用表面积公式计算实际图形的表面积。
教具准备
圆柱表面展开示意图。
教学过程
一、读题导入
1.齐读课题。
师:看到这个课题,你们想到了哪些与之相关的知识。
生:长方体和正方体的表面积;圆柱的底面和侧面。
2.复习相关知识
(1)什么是长方体、正方体的表面积?它们是怎么计算的?
二、探索新知
1.课件出示圆柱,揭示圆柱的表面积公式
师:根据刚才的讨论,你能说说应该要求出圆住的表面积,必须哪些条件吗?并说说理由。
生:因为圆柱的表面有一个侧面和两个底面。所以用一个侧面积加上两个底面积。
2.教学圆柱的表面积
(1)师:(课件出示上堂课中圆柱的侧面展开图),上堂课,我们研究了圆柱的侧面展开图,以及圆柱侧面积的计算方法,今天我们来进一步讨论圆柱表面积的计算方法。
(2)谁还记得圆柱侧面积的计算公式。
学生:圆柱的侧面积=底面周长高
(3)拿一个圆柱形的纸盒,指出它的侧面和两个底面。然后展开,使学生直观看到圆柱展开图是两个同样大的圆和一个长方形。
(4)议一议:怎样求圆柱的表面积?学生讨论。
学生:圆柱的表面积就是用圆柱的侧面积加上两个底面积。
(4)教学例题:
出示教材中圆柱示意图,让学生了解圆柱的高和半径,鼓励学生自己尝试计算。
(5)交流学生计算的方法和结果。如果出现列综合算式的,要给予表扬。如果没有。提出兔博士的话,鼓励学生尝试,老师可进行必要的指导。
三、练习
试一试
(1)提出试一试的问题,让学生尝试计算。
(2)交流计算的过程和结果。重点说说计算的过程和方法,注意本题中给出已知条件是圆柱的底直径。
四、巩固
练一练1:则由学生独立完成。
练一练2:此题是一个半圆柱体,应该怎样理解它的表面积,学生充分发表意见后再让学生自己来完成。
练一练3:先指导学生明确解决问题的思路,再自主解答。
五、家庭作业
自己找一个圆柱体的物体,来测量它的数据并计算出它的表面积。
圆柱的表面积教案8篇相关文章: